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Abstract— A key challenge for robotic manipulation in open
domains is how to acquire diverse and generalizable skills
for robots. Recent progress in one-shot imitation learning and
robotic foundation models have shown promise in transferring
trained policies to new tasks based on demonstrations. This
feature is attractive for enabling robots to acquire new skills and
improve their manipulative ability. However, due to limitations
in the training dataset, the current focus of the community has
mainly been on simple cases, such as push or pick-place tasks,
relying solely on visual guidance. In reality, there are many
complex skills, some of which may even require both visual
and tactile perception to solve. This paper aims to unlock the
potential for an agent to generalize to hundreds of real-world
skills with multi-modal perception. To achieve this, we have
collected a dataset comprising over 110,000 contact-rich robot
manipulation sequences across diverse skills, contexts, robots,
and camera viewpoints, all collected in the real world. Each
sequence in the dataset includes visual, force, audio, and action
information. Moreover, we also provide a corresponding human
demonstration video and a language description for each robot
sequence. We have invested significant efforts in calibrating all
the sensors and ensuring a high-quality dataset. The dataset is
made publicly available on our website: rh20t.github.io.

I. INTRODUCTION

Robotic manipulation requires the robot to control its
actuator and change the environment following a task spec-
ification. Enabling robots to learn new skills with minimal
effort is one of the ultimate goals of the robot learning com-
munity. Recent research in one-shot imitation learning [10,
14] and emerging foundation models [3, 5] draw an exciting
picture of transferring trained policies to a new task given a
demonstration. This paper shares the same aspiration.

While the future is promising, most research in robotics
only demonstrates the effectiveness of their algorithms on
simple cases, such as pushing, picking, and placing objects
in the real world. Two main factors hinder the exploration of
more complex tasks in this direction. Firstly, there is a lack
of large and diverse robotic manipulation datasets in this
field [3], despite the community’s long-standing eagerness
for such datasets. The fundamental problem stems from
the huge barriers associated with data acquisition. These
challenges include the arduous task of configuring diverse
robot platforms, creating varied environments, and gathering
manipulation trajectories, which require significant effort and
resources. Secondly, most methods focus solely on visual
guidance control, yet it has been observed in physiology
that humans with impaired digital sensibility struggle to
accomplish many daily manipulations with visual guidance

alone [21]. This indicates that more sensory information
should be considered in order to learn various manipulations
in open environments.

To address these problems, we revisit the data collection
process for robotic manipulation. In most imitation learning
literature, expert robot trajectories are manually collected
using simplified user interfaces like 3D mice, keyboards,
or VR remotes. However, these control methods are inef-
ficient and pose safety risks when the robot engages in
rich-contact interactions with the environment. The main
reasons are the unintuitive nature of controlling with a 3D
mouse or keyboard, and the inaccuracies resulting from
motion drifting when using a VR remote. Additionally,
tele-operation without force feedback degrades manipulation
efficiency for humans. In this paper, we equipped the robot
with a force-torque sensor and employed a haptic device
with force rendering for precise and efficient data collection.
With the goal that the dataset should be representative,
generalized, diverse and close to reality, we collect around
150 skills with complicated actions other than simple pick-
place. These skills were either selected from RLBench [19]
and MetaWorld [40], or proposed by ourselves. Many skills
require the robot to engage in contact-rich interactions with
the environment, such as cutting, plugging, slicing, pouring,
folding, rotating, etc. We have used multiple different robot
arms commonly found in labs worldwide to collect our
dataset. The diversity in robot configurations can also aid
algorithms in generalizing to other robots.

So far, we have collected around 110,000 sequences
of robotic manipulation and 110,000 corresponding human
demonstration videos for the same skills. This amounts to
over 40 million frames of images for the robotic manip-
ulation sequences and over 10 million frames for the hu-
man demonstrations. Each robot sequence contains abundant
visual, tactile, audio, and proprioception information from
multiple sensors. The dataset is carefully organized, and we
believe that a dataset with such diversity and scale is crucial
for the future emergence of foundation models in general
skill learning, as promising progress has been witnessed in
the NLP and CV communities [6, 32, 23].

II. RELATED WORKS

We briefly review related works in robotic manipulation
datasets, zero/one-shot imitation learning, and vision-force
learning methods.

https://rh20t.github.io
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Fig. 1: Overview of our RH20T dataset. We adopt multiple robots and setup diverse environments for the data collection. The robot
manipulation episodes include multi-modal visual, force, audio and action data. For each episode, we collect the manipulation process with
well calibrated multi-view cameras. Our dataset contains diverse robotic manipulation skills and each episode has a corresponding human
demonstration and language description. In total, we provide over 110K robot episodes and 110K corresponding human demonstration.
The dataset contains over 50 million frames and over 140 tasks.

a) Dataset: Our community has been striving to create
a large-scale and representative dataset for a significant pe-
riod of time. Previous research in one-shot imitation learning
has either collected robot manipulation data in the real
world [14] or in simulation [27]. However, their datasets
are usually small and the tasks are simple. Some attempts
have been made to create large-scale real robot manipulation
datasets [9, 15, 20, 22, 28, 34]. For example, RoboTurk [28]
developed a crowd-sourcing platform and collected data
on three tasks using mobile phone-based tele-operation.
MIME [34] collected 20 types of manipulations using Baxter
with kinesthetic teaching, but they were limited to a single
robot and simple environments. RoboNet [9] gathered a
significant amount of robot trajectories with various robots,
grippers, and environments. However, it mainly consists of
random walking episodes due to the challenges of perform-
ing meaningful skills. BC-Z [20] presents a manipulation
collection of 100 “tasks”, but as pointed out in [27], they
are combinations of 9 verbs and 6-15 objects. Similarly, RT-
1 [5] and RoboSet [2] also collect large-scale manipulation
datasets but focus on a limited set of skills. Concurrently
to our work, BridgeData V2 [36] collects a dataset with 13
skills across 24 environments. In this paper, we present a
larger dataset with a wider range of skills and environments,
with more comprehensive information. More importantly,
all previous datasets put less emphasize on contact-rich
manipulation. Our dataset focus more in this case and include
the crucial force modality during manipulation.

b) Zero/One-shot imitation learning: The objective of
training policies that can transfer to new tasks based on
robot/human demonstrations is not new. Early works [33,
29, 15] focused on imitation learning using high-level states
such as trajectories. Recently, researchers [14, 10, 42, 18,
41, 31, 30, 44, 16, 35, 4, 39, 8, 26, 20, 27] have started

exploring raw-pixel inputs with the advancement of deep
neural networks. Additionally, the requirement of demon-
strations has been reduced by eliminating the need for
actions. Recent approaches have explored various one-shot
task descriptors, including images [18, 4], language [35,
26, 5, 2], robot video [14, 8, 27], or human video [41,
20]. These methods can be broadly classified into three
categories: model-agnostic meta-learning [14, 41, 18, 4, 44],
conditional behavior cloning [10, 8, 20, 5, 27], and task
graph construction [16, 17]. While significant progress has
been made in this direction, these approaches only consider
visual observations and primarily focus on simple robotic
manipulations such as reach, pick, push, or place. Our dataset
offers the opportunity to take a step further by enabling
the learning of hundreds of skills that require multi-modal
perception within a single imitation learning model.

c) Multi-Modal Learning of Vision and Force: Force
perception plays a crucial role in manipulation tasks, pro-
viding valuable and complementary information when visual
perception is occluded. The joint modeling of vision and
force in robotic manipulation has recently garnered interest
within the research community [12, 25, 13, 24, 1, 7, 37].
However, most of these studies overlook the asynchronous
nature of different modalities and simply concatenate the
signals before or after the neural network. Moreover, the
existing research primarily focuses on designing multi-modal
learning algorithms for specific tasks, such as grasping [7],
insertion [24], twisting [12], or playing Jenga [13]. A recent
attempt [38] explores jointly imitating the action and wrench
on 6 tasks respectively. Overall, the question of how to effec-
tively handle multi-modal perception at different frequencies
for various skills in a coherent manner remains open in
robotics. Our dataset presents an opportunity for exploring
multi-sensory learning across diverse real-world skills.



Dataset # Traj. # Skills # Robots Human Demo Contact Rich Depth Sensing Camera Calib. Force Sensing

MIME [34] 8.30k 12 1 " % " % %

RoboTurk [28] 2.10k 2 1 % % % % %

RoboNet [9] 162k N/A 7 % % % % %

BridgeData [11] 7.20k 4 1 % % "* % %

BC-Z [20] 26.0k 3 1 " % % % %

RoboSet [2] 98.5k 12 1 % " " % %

BridgeData V2 [36] 60.1k 13 1 % " "* % %

RH20T 110k 42 4 " " " " "

TABLE I: Comparison with previous public datasets: “Camera Calib.” indicates extrinsic calibration of all cameras and the robot. “"*”
indicates that only a portion of the images are paired with depth sensing. This comparison highlights the comprehensiveness of our dataset,
which is the most extensive dataset for robotic manipulation to date.

Conf. Robot Gripper 6DoF F/T Sensor Tactile

Cfg 1 Flexiv Dahuan AG95 OptoForce N/A
Cfg 2 Flexiv Dahuan AG95 ATI Axia80-M20 N/A
Cfg 3 UR5 WSG50 ATI Axia80-M20 N/A
Cfg 4 UR5 Robotiq-85 ATI Axia80-M20 N/A
Cfg 5 Franka Franka Franka N/A
Cfg 6 Kuka Robotiq-85 ATI Axia80-M20 N/A
Cfg 7 Kuka Robotiq-85 ATI Axia80-M20 uSkin

TABLE II: Hardware specification of different configurations.

Conf. Modal Size Frequency

Cfg 1-7

RGB image 1280×720×3 10 Hz
Depth image 1280×720 10 Hz

Binocular IR image 1280×720 10 Hz
Robot joint angle 6 / 7 10 Hz
Robot joint torque 6 / 7 10 Hz

Gripper Cartesion pose 6 / 7 100 Hz
Gripper width 1 10 Hz

6DoF F/T 6 100 Hz
Audio N/A 30 Hz

Cfg 7 Tactile 2×16×3 200 Hz

TABLE III: Data information of different configurations. The first
9 data modality are the same for all robot configurations. The last
data modality of fingertip tactile sensing is only available in Cfg 7.

III. RH20T DATASET

We introduce our robotic manipulation dataset, Robot-
Human demonstration in 20TB (RH20T), to the community.
Fig. 1 shows an overview of our dataset.

A. Properties of RH20T

RH20T is designed with the objective of enabling general
robotic manipulation, which means that the robot can per-
form various skills based on a task description, typically a
human demonstration video, while minimizing the notion of
rigid tasks. The following properties are emphasized to fulfill
this objective, and Tab. I provides a comparison between
our dataset and previous representative publicly available
datasets.

a) Diversity: The diversity of RH20T encompasses
multiple aspects. To ensure task diversity, we selected 48
tasks from RLBench [19], 29 tasks from MetaWorld [40],
and introduced 70 self-proposed tasks that are frequently
encountered and achievable by robots. In total, it contains

147 tasks, consisting of 42 skills (i.e., verbs). Hundreds of
objects were collected to accomplish these tasks. To ensure
applicability across different robot configurations, we used 4
popular robot arms, 4 different robotic grippers, and 3 types
of force-torque sensors, resulting in 7 robot configurations.
Details about the robot configurations are provided in Tab. II.

To enhance environment diversity, we frequently replaced
over 50 table covers with different textures and materials, and
introduced irrelevant objects to create distractions. Manipula-
tions were performed by tens of volunteers, ensuring diverse
trajectories. To increase state diversity, for each skill, vol-
unteers were asked to change the environmental conditions
and repeat the manipulation 10 times, including variations in
object instances, locations, and more. Additionally, we con-
ducted robotic manipulation experiments involving human
interference, both in adversarial and cooperative settings.
Further details about each task are provided in the appendix.

b) Multi-Modal: We believe that the future of robotic
manipulation lies in multi-modal approaches, particularly
in open environments, where data from different sensors
will become increasingly accessible with advancements in
technology. In the current version of RH20T, we provide
visual, tactile, audio, and proprioception information. Visual
perception includes RGB, depth, and binocular IR images
from three types of cameras. Tactile perception includes 6
DoF force-torque measurements at the robot’s wrist, and
some sequences also include fingertip tactile information.
Audio data includes recordings from both in-hand and global
sources. Proprioception encompasses joint angles/torques,
end-effector Cartesian pose and gripper states. All informa-
tion is collected at the highest frequency supported by our
workstation and saved with corresponding timestamps, and
the details are given in Tab. III.

c) Scale: Our dataset consists of over 110,000 robot
sequences and an equal number of human sequences, with
more than 50 million images collected in total. On average,
each skill contains approximately 750 robot manipulations.
Fig. 2 provides a detailed breakdown of the number of
manipulations across different tasks in the dataset, showing
a relatively uniform distribution. Fig. 3 presents statistics on
the manipulation time for each sequence in our dataset. Most
sequences have durations ranging from 10 to 100 seconds.
With its substantial volume of data, our dataset stands as the



Fig. 2: Statistics on the amount of robotic manipulation for different
tasks.

Fig. 3: Statistics on the execution time of different robotic manip-
ulations in our dataset.

largest in our community at present.
d) Data Hierarchy: Humans can accurately understand

the semantics of a task based on visual observations, re-
gardless of the viewpoint, background, manipulation subject,
or object. We aim to provide a dataset that offers dense
<human demonstration, robot manipulation> pairs, enabling
models to learn this property. To achieve this, we organize
the dataset in a tree hierarchy based on intra-task similarity.
Fig. 4 illustrates an example tree structure and the criteria
at different levels. Leaf nodes with a more recent common
ancestor are more closely related. For each task, millions of
<human demonstration, robot manipulation> pairs can be
constructed by pairing leaf nodes with a common ancestor
at different levels.

e) Compositionality: RH20T includes not only short
sequences that perform single manipulations but also long
manipulation sequences that combine multiple short tasks.
For example, a sequence of actions such as grabbing the plug,
plugging it into the socket, turning on the socket switch, and
turning on the lamp can be considered as a single task, with
each step also being a task. This task composition allows us
to investigate whether mastering short sequences improves
the acquisition of long sequence tasks.

Fig. 4: Example of data hierarchy: The leaf nodes in the hierarchy
consist of human demonstrations (highlighted in green) and robot
manipulations (highlighted in red, only the right-est example is
shown in the figure). We can pair a robot manipulation sequence
with human demonstration videos captured from different view-
points, scenes, human subjects, and environments. Zoom in to
explore the details of various human demonstrations.

B. Data Collection and Processing

Unlike previous methods that simplify the tele-operation
interface using 3D mice, VR remotes, or mobile phones, we
place emphasis on the importance of intuitive and accurate
tele-operation in collecting contact-rich robot manipulation
data. Without proper tele-operation, the robot could easily
collide with the environment and generate significant forces,
triggering emergency stops. Consequently, previous works
either avoid contact [20] or operate at reduced speeds to
mitigate these risks.

a) Collection: Fig. 5 shows an example of our data
collection platform. Each platform contains a robot arm with
force-torque sensor, gripper and 1-2 inhand cameras, 8-10
global cameras, 2 microphones, a haptic device, a pedal and a
data collection workstation. All the cameras are extrinsically
calibrated before conducting the manipulation. The human
demonstration video is collected on the same platform by
human with an extra ego-centric camera. Tens of volunteers
conducted the robotic manipulation according to our task
lists and text description. We make our tele-operation pretty
intuitive and the average training time is less than 1 hour.
The volunteers are also required to specify ending time of
the task and give a rating from 0 to 9 after finishing each
manipulation. 0 denotes the robot enters the emergency state
(e.g., hard collision), 1 denotes the task fails and 2-9 denotes
their evaluation of the manipulation quality. The success and
failure cases have a ratio of around 10:1 in our dataset.

b) Processing: We preprocess the dataset to provide a
coherent data interface. The coordinate frame of all robots
and force-torque sensors are aligned. Different force-torque
sensors are tared carefully. The end-effector Cartesian pose
and the force-torque data are transformed into the coordina-
tion system of each camera. Manual validation is performed
for each scene to ensure the camera calibration quality. Fig. 6
shows an illustration of rendering different component of
the data in a unified coordinate frame and demonstrates the



Fig. 5: Illustration of our data collection platform

high-quality of our dataset. The detailed data format and data
access APIs are provided on our website.

IV. EXPERIMENTS

We introduce the RH20T dataset in pursuit of enabling
robots to acquire novel skills within unfamiliar environments
using minimal data. While the ultimate objective is to train
a large model capable of performing such tasks in a one-
shot learning fashion, we acknowledge the significant com-
putational resources required for this endeavor, which are
presently beyond our reach. Consequently, this paper pri-
marily focuses on demonstrating the dataset’s effectiveness
in enhancing the transferability of a baseline model within a
few-shot learning framework.

To assess the efficacy of our dataset, we adopt the Action
Chunking with Transformers (ACT) model as our baseline
network. ACT, as proposed by in a recent work [43], has
demonstrated remarkable capabilities in handling complex
robot manipulation tasks. It leverages the power of trans-
formers to learn intricate action sequences from hundreds of
demonstrations.

A. Experimental Setup

a) Platform: In our experiments, we utilize a Flexiv
robot arm equipped with an Intel RealSense RGB-D camera
in front of the robot for perceiving the environment and a
Dahuan-95 gripper for interacting with objects. We set up
a new environment where the camera pose and table cover
are different from those in our RH20T dataset. Fig. 7 (a)
illustrates our robot platform.

b) Procedure: We setup a task involves grasping a
block and placing it on a weight. In the new environment, we
collect 75 robotic manipulation sequences, including RGB
images and actions, through teleoperation. From our dataset,
we select 335 robotic manipulation from the same task and
195 manipulation from 3 different but similar tasks (pick
up a block; pick up a block and place it at the designated
location; pick up a block and move it from left to right). All

Fig. 6: We display the point cloud generated by fusing the RGBD
data from the multi-view cameras mounted in our data collection
platform. The red pyramids indicate the camera poses. Additionally,
the robot model is rendered in the scene based on the joint angles
recorded in our dataset. It is evident that all the cameras are
calibrated with respect to the robot’s base frame, and all the
recorded data are synchronized in the temporal domain.

the manipulation sequences from our dataset have different
camera views, table covers, objects and robot embodiments
from the robotic environment in our current experiment.

We initiate the training process by pre-training the ACT
model on different subsets of the data selected from our
dataset. By exposing the model to a range of robotic manip-
ulation scenarios, we aim to enhance its ability to generalize
across various tasks and environmental conditions. Following
pre-training, we fine-tune the ACT model on specific portions
of the newly collected data, focusing on the task involving
grasping and weight placement. This stage aims to refine the
model’s performance on the target task.

We evaluate the performance of the ACT model both with
and without pre-training on our dataset. The experiments
are carried out on the real robot platform and repeated for
20 times for each configuration. We divide the task into 3
stages, namely whether the robot can reach the block, grasp
it and place it on the weight, and measure the success rate
at each stage. Additionally, we examine how well the model
generalizes to variations in object properties. The evaluation
time limit is set as 60 seconds.

c) Implementation Details: For ACT model, we set the
hidden channel and the feedforward channel in the network
to 512 and 3200 respectively. During pre-training phase, the
model is trained with a learning rate of 2 × 10−5 for 10
epochs; while during fine-tuning phase, the model is trained
with a learning rate of 10−5 for 750 epochs. Although it
is less than the original implementation [43], we increase
the sample density per epoch by including all valid sub-
trajectories of the newly collected demonstrations. Hence,
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Fig. 7: (a) The experimental robot platform. (b) Varied weights
(metal, pink) assessing the model’s generalization ability. (c) Dis-
tinct table covers (white, blue) evaluating the model’s generalization
ability.

750 epochs are sufficient for the model to converge well. The
chunk size is set to 20, which corresponds to 2 seconds with
the frequency of 10Hz. The images are scaled to 640×360
during training and testing. We apply temporal ensembling
and set its coefficient k = 0.01 following [43] in evaluation.

B. Experimental Results

We present the model’s success rates under different
training configurations in Tab. IV. When training the network
with 75 demonstrations, we observe that pretraining the
model with selected data from our dataset, despite differences
in camera viewpoints, robot embodiments, and backgrounds,
enhances the final success rate. Additionally, the inclusion
of data from different tasks during pretraining further im-
proves the overall success rate. Comparing the results of
training for 500 epochs with pretraining to training for 750
epochs without pretraining, we find that pretraining on our
dataset also accelerates model convergence. These results
demonstrate that leveraging the diverse training data from
our dataset enhances the adaptability and robustness of the
robotic manipulation model.

We then reduce the number of demonstrations collected
in this new environment to simulate a few-shot learning sce-
nario. With 40 robot demonstrations, the results of pretrain-
ing on our dataset outperform the counterpart trained with
75 demonstrations without pretraining. Further reducing the
demonstrations to 10, the results of pretraining on multiple
tasks from our dataset still surpass the one trained with 75

# Demos Pretrain Task Training Success Rate (%) ↑
Same Multi. Epochs Reach Pick Place

75

500 35 10 0
✓ 500 70 15 15
✓ ✓ 500 65 20 15

750 55 5 0
✓ 750 80 20 15
✓ ✓ 750 80 25 25

40
750 45 10 0

✓ 750 65 25 5
✓ ✓ 750 70 25 15

10
750 15 0 0

✓ 750 30 15 5
✓ ✓ 750 50 10 5

TABLE IV: Experimental results of ACT trained in different
settings and tested in the original environment (20 trials).

Type w/wo
pretrain

Success Rate (%) ↑
Reach Pick Place

weight
metal 20 0 0

✓ 80 30 10

pink 40 10 0
✓ 70 20 10

table cover
white 20 0 0

✓ 50 0 0

blue 30 0 0
✓ 80 20 10

TABLE V: Experimental results of ACT trained in different settings
and tested in different environments (10 trials).

demonstrations without pretraining. This demonstrates the
beneficial impact of our dataset on few-shot learning in
robotic manipulation.

Finally, we replace the object and table cover used during
testing with novel ones to assess the models’ generalization
ability in new environments. The weights and table covers
used for replacement are shown in Fig. 7(b) and (c). In
this experiment, we compare two models, both are trained
with the original 75 demonstrations for 750 epochs, one with
pretraining on multiple similar tasks from our dataset and one
without. The experimental results in Tab. V demonstrate that
the model pretrained on our dataset consistently outperforms
its counterpart without pretraining, indicating that our dataset
enhances the model’s generalization ability.

V. DISCUSSION AND CONCLUSION

In this paper we present the RH20T dataset for diverse
robotic skill learning. We believe it can facilitate many areas
in robotics, especially for robotic manipulation in novel
environments. The current limitations of this paper are that (i)
the cost of data collection is expensive and (ii) the potential
of robotic foundation models is not evaluated on our dataseet.
We have tried to duplicate the results of some recent robotic
foundation models but haven’t succeeded yet due the limit
of computing resources. Thus, we decide to open source the
dataset at this stage and hope to promote the development
of this area together with our community. In the future, we
hope to extend our dataset to broader robotic manipulation,
including dual-arm and multi-finger dexterous manipulation.
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Appendix Task Specification of RH20T

Table 1: Task description for our dataset. “Src.” denotes the source of the task. Note that the task
IDs are not necessarily continuous.

Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

1. Press
the button
from top
to bottom

Meta-
World

2. Pull out
a napkin

Self-
Proposed

3. Press
three
buttons
from left
to right in
sequence

RLBench

4. Pick
up a block
on the left
and move
it to the
right

Meta-
World

5. Ap-
proach
and touch
the side of
a block

Meta-
World

6. Use the
gripper
to push
a block
from left
to right

Meta-
World

7. Hold a
block with
the gripper
and sweep
it from left
to right on
the table

Meta-
World

8. Grab a
block and
place it at
the des-
ignated
location

RLBench

9. Take
out one
Hanoi
block and
throw it
aside

RLBench

10. Place
the hand-
set of the
telephone
on the
corre-
sponding
phone
cradle

RLBench 11. Water
the plant RLBench

12. Push
the soccer
ball into
the goal

Meta-
World

13. Place
the block
on the
scale

RLBench

14. Re-
move the
object
from the
scale

RLBench 15. Play
the drum

Self-
Proposed

16. Hit the
pool ball RLBench

17. Put
the pen
into the
pen holder

RLBench 18. Play
Jenga RLBench



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

19. Play
the first
move as
black in
the upper
right cor-
ner of the
Go board

Self-
Proposed

20. Turn
on the
desk lamp
by press-
ing the
button

RLBench

21. Turn
off the
desk lamp
by press-
ing the
button

RLBench

22. Wave
the flag

Self-
Proposed

23. Turn
on the
power
strip by
pressing
the button

Self-
Proposed

24. Turn
off the
power
strip by
pressing
the button

Self-
Proposed

25. Un-
fold a
piece of
paper

Self-
Proposed

26. Use
the grip-
per to
push and
close the
drawer

Meta-
World

28. Grasp
the handle
and close
the drawer

RLBench

29. Grasp
the handle
and open
the drawer

RLBench
30. Pour
out the
test tube

Self-
Proposed

31. Cover
the box

Meta-
World

32. Slide
the outer
casing
onto the
gift box

Self-
Proposed

33. Grasp
one block
to sweep
the other
block onto
the mark

Meta-
World

34.
Stack the
squares
into a
pyramid
shape

RLBench

35. Pick
up one
small
block

RLBench
36. Shake
the test
tube

Self-
Proposed

37. Stack
the blocks
in a verti-
cal line of
five

RLBench

38. Pick
up the cup RLBench

39. Pour
the water
from one
cup into
another
empty cup

blabla 40. Stack
the cups RLBench

41. Clean
the table-
top with a
sponge

RLBench

42. Screw
the lid
onto the
jar

RLBench

43. Un-
screw the
lid from
the jar

RLBench



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

44. Pick
up a bag
of things

Self-
Proposed

45. Hang
the brush
on the pen
rack

Self-
Proposed

46. Hang
the cup on
the cup
rack

RLBench

47. Take
the cup off
the cup
rack

RLBench

48. Rotate
the steer-
ing wheel
90 degrees
clockwise

Self-
Proposed

49. Rotate
the steer-
ing wheel
90 degrees
counter-
clockwise

Self-
Proposed

50. Put
the dish
on the
dish rack

Self-
Proposed

51. Take
the dish
off the
dish rack

Self-
Proposed

52. Grab
a bas-
ketball,
release it
and shoot
it into the
basket

Meta-
World

53. Use a
clamp

Meta-
World

54. Catch
the mov-
ing object

Self-
Proposed

55. Trans-
fer liquid
using a
dropper

Self-
Proposed

56. Re-
ceive
something
handed
over by a
human

Self-
Proposed

57. Turn
on the
four but-
tons on
the power
strip

Self-
Proposed

58. Turn
off the
four but-
tons on
the power
strip

Self-
Proposed

59. Turn
the knob
to increase
the vol-
ume of a
speaker

Self-
Proposed

60. Turn
the knob
to de-
crease the
volume
of the
speaker

Self-
Proposed

61. Take
everything
out of the
gift box

Self-
Proposed

62. Put
the toilet
paper on
its holder

Self-
Proposed

63. Use a
shovel to
scoop up
an object

Self-
Proposed

64. Take
the toilet
paper off
its holder

Self-
Proposed

65. Build
with small
Lego
blocks

Self-
Proposed

66. Build
with large
Megabloks

Self-
Proposed

67. Press
a button
from top
to bottom
with ob-
stacles

Meta-
World



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

68. Press
a button
horizon-
tally with
obstacles

Meta-
World

69. As-
semble
one piece
of a puz-
zle

RLBench
70. Open
a sliding
window

Meta-
World

71. Close
a sliding
window

Meta-
World

72. Drop
coins into
a piggy
bank

Self-
Proposed

73. Put
things in
the drawer

RLBench

74. Press
the button
horizon-
tally

Meta-
World

75. Finish
setting up
the starting
position of
a chess-
board that
is almost
arranged

Self-
Proposed

76. Stack
blocks
(small
Lego) one
on top of
the other
every time

Self-
Proposed

77. Stack
blocks
(small
Lego)
randomly
one at a
time

Self-
Proposed

78. Close
the mi-
crowave
door

RLBench

79. Open
the mi-
crowave
door

RLBench

80. Flip
over and
spread out
the paper
that is laid
flat on the
table

Self-
Proposed

81. Un-
fold the
leg of the
glasses
(with one
hand)

Self-
Proposed

82. Scoop
water with
a large
spoon
from one
bowl to
another

Self-
Proposed

83. Swat
with a fly-
swatter

Self-
Proposed

84. As-
semble:
Attach the
bubble
ring to the
ball

Meta-
World

85. Re-
move the
bubble ring
from the
assembled
bubble ring
and ball

Meta-
World

86. Dial a
number on
an old ro-
tary phone

Meta-
World

88. Pick
up and
place an
object
with ob-
stacles

Meta-
World

89. Push
an object
with ob-
stacles

Meta-
World

90. Ap-
proach
and touch
an object
with ob-
stacles

Meta-
World

91. Move
an object
from one
box to an-
other

Meta-
World

92. Turn
the hands
of a clock

RLBench



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

93. Put
the photo
frame
on the
bracket

RLBench 94. Open
a box RLBench

95. Take
the photo
frame
down
from the
bracket

RLBench

96. Take
something
out of a
drawer

RLBench

100. Stir
the beaker
with a
glass rod

Self-
Proposed

101.
Clean the
table with
a cloth

Self-
Proposed

102.
Scrub the
table with
a brush

Self-
Proposed

103. Drag
the plate
to the goal
post after
holding it
down

Meta-
World

104. Drag
the plate
back after
holding it
down

Meta-
World

105. Put
the object
on the
shelf

Meta-
World

106. Take
the object
down
from the
shelf

Meta-
World

107.
Put the
garbage in
the trash
can

RLBench

108.
Sharpen
the pencil
with a
pencil
sharpener

Self-
Proposed

109. In-
sert the
pencil into
the pencil
sharpener

Self-
Proposed

110. Take
the pencil
out from
the pencil
sharpener

Self-
Proposed

111. Put
the object
with the
corre-
sponding
shape into
the corre-
sponding
hole

RLBench

112. Plug
in the
charger to
the socket

Self-
Proposed

116. Use
the correc-
tion tape
on paper

Self-
Proposed

118. Turn
on the wa-
ter tap

Meta-
World

119. Turn
off the wa-
ter tap

Meta-
World

120. In-
stall the
light bulb
by rotat-
ing it

RLBench

121. Take
out the
light bulb
by rotat-
ing it

RLBench

122. Put
the knife
on the
cutting
board

RLBench

123. Put
the knife
on the
knife rack

RLBench



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

124. Push
down the
lever

Meta-
World

125. Pull
up the
lever

Meta-
World

126. Plug
in the
power
cord to the
socket

Self-
Proposed

127. Plug
in the
power cord
of the desk
lamp, turn
on the
socket, and
light up the
desk lamp

Self-
Proposed

128. Plug
in the
USB drive
to the
docking
station

RLBench

129. Plug
in the bulb
holder with
a bulb to
the socket

Self-
Proposed

130. Plug
in the bulb
holder with
a bulb to
the socket
and turn on
the switch
of the bulb

Self-
Proposed

131. Stack
the blocks
into a
pyramid

Self-
Proposed

132. Stack
the blocks
into a cross
shape

Self-
Proposed

200. Insert
the tip of
a large
pipette into
the holder
for large
pipette tips

Self-
Proposed

201. Insert
the tip of
a medium
pipette into
the holder
for medium
pipette tips

Self-
Proposed

202. Insert
the tip of
a small
pipette into
the holder
for small
pipette tips

Self-
Proposed

204. Trans-
fer all large
pipette tips
from one
holder to
another
holder
for large
pipette tips

Self-
Proposed

205. Chop
the scal-
lions

Self-
Proposed

206. Chop
the green
garlic

Self-
Proposed

207. Chop
the chili
peppers

Self-
Proposed

208. Slice
the lotus
root

Self-
Proposed

209. Slice
the carrots

Self-
Proposed

210. Chop
the onions

Self-
Proposed

211. Trans-
fer all
medium
pipette
tips from
one rack
to another
holder for
medium
pipette tips

Self-
Proposed

212. Trans-
fer all small
pipette
tips from
one rack
to another
holder
for small
pipette tips

Self-
Proposed

213. Chop
the orange

Self-
Proposed

215. Chop
the pota-
toes

Self-
Proposed

216.
Chop the
cucum-
ber into
shreds

Self-
Proposed



Items Task
Desc. Src. Items Task

Desc. Src. Items Task
Desc. Src.

217. Plug
in the bulb
holder to
the socket

Self-
Proposed

218. Plug
in the bulb
holder to
the socket,
install the
bulb, turn
on the
socket to
light up the
bulb

Self-
Proposed

222.
Cover the
pot with
the lid

RLBench

223. Take
the cups
off the
shelf and
stack them
together

Self-
Proposed

225.
Put the
bowl into
the mi-
crowave

Self-
Proposed

329. Put
the glass
cup onto
the shelf

Self-
Proposed
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